Great Discoveries in Mathematics
CTY Course Syllabus

Week 1

<table>
<thead>
<tr>
<th>Day</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1 | • Introductions and Getting Started
 • Origin of Numbers
 • The origin of the ZERO and Positional Number Systems
 • Base conversions: 10, 2, and others.
 • Introduction to exponents
 • Babylonian culture and number system |
| | Structure and Methods
 • Warm-up Puzzle
 • Start up: Read Syllabus, and make the classroom rules
 • First day of Class: Pre-assessment of skills
 • Lecture/discussion: Origin of Numbers and Positional Number Systems (Our own number system is a positional system with 9 special symbols and a zero symbol to denote an empty place.)
 • Worksheet: Bases and conversion (Inductive reasoning: Base10, 2, 5, and Switching back and forth between bases)
 • Worksheet: Babylonian Number System
 • Puzzle-of-the-day
 • Collaboration Project (pairs): Create your own number system. |
| 2 | • Finish Number Systems Project
 • Introduction to Ancient Chinese, Magic Squares, Chinese Rod Numerals.
 • Roman Number System. |
| | Structure and Methods
 • Warm-up Puzzle
 • Presentations: Number Systems
 • Discussion Topic: students take turns answering two questions: (a) "Why are positional number systems important? And (b) "What are the challenges with the ancient number system?."
 • Worksheet: 2400B.C. Chinese System of Numerals
 • Worksheet: Roman System of Numerals
 • Worksheets: Magic Squares
 • Academic Curiosity: Exchanging magic square rows and columns.
 • Puzzle-of-the-day
 • Partner Project: Create your own magic square(s). |
| 3 | • Finish Magic Squares Project.
 • Introduction to the Greek Culture and Thales.
 • Egyptian Number Systems
 • Egyptian Culture
 • Egyptian Multiplication and Addition.
 • Overview: congruent triangles and similar triangles. |
| | Structure and Methods
 • Warm-up Puzzle
 • Group Activity where students take turns answering the question: "Why are fractional numbers important?"
 • Write fractions using Eye of Horus fractions.
 • Presentation of Magic Square Projects.
 • Math Reasoning Worksheet (deductive reasoning)
 • Worksheets: Egyptian Hieroglyphics. (inductive reasoning)
 • Worksheet: Learning to write a proof (deductive reasoning)
 • Collaboration Project: Invention of an ancient culture, number system. |
<table>
<thead>
<tr>
<th>Day</th>
<th>Topics</th>
<th>Structure and Methods</th>
</tr>
</thead>
</table>
| 4 | • Similar triangles and proportions. (Thales)
• Introduction to proof writing (direct and indirect)
• More Greek Culture with Pythagoras. Who was Pythagoras?
• Introduction to the Pythagorean Theorem proof, Geometry Book, Structure and Method page 290.
• Introduction to number shapes, square numbers, oblong numbers, triangular numbers.
• Fun with Figurate Numbers. | • Warm-up Puzzle
• Similar Triangles and proportions.
• Reading Assignment: Pythagoras and/or Pythagorean Theorem Video
• Practice using figurate numbers.
• Puzzle-of-the-Day: The Spider and The Fly and etc. (Historical Connections in Mathematics, Volume I, page 8 - 10.)
• Pythagorean Theorem construction activity.
• **Review of material covered** for Test tomorrow (Days 1 – 4). |
| 5 | • **Week 1 Test** on information covered.
• Platonic Solids – building them.
• Who is Euclid?
• Euclidean algorithms for basic construction.
• Basic construction. | • Warm-up puzzle.
• Discover the heights of objects around campus using Thales’ method. (Suggested 9:00 – 10:30 am)
• Individual Project: Construction of Platonic solids using gum drops (candy) and toothpicks (See next two pages for diagrams).
• Academic Curiosity: Unsolved Problems.
• Puzzle-of-the-Day! |

Platonic Solids
Week 2

<table>
<thead>
<tr>
<th>Day</th>
<th>Topics</th>
<th>Structure and Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Platonic Solids complete.</td>
<td>Warm-up puzzle.</td>
</tr>
<tr>
<td></td>
<td>Average of Heights using Thales, another similar Triangles Activity.</td>
<td>Finish platonic solids.</td>
</tr>
<tr>
<td></td>
<td>Great Mathematicians and their work involving number systems and number theory: Euclid.</td>
<td>Activity: Students examine Euclid’s propositions.</td>
</tr>
<tr>
<td></td>
<td>Reading Assignment: Who is Euclid? Taken from the book, Historical Connections Vol. II, pages 9 – 16</td>
<td>Introduction/review of Radicals</td>
</tr>
<tr>
<td></td>
<td>Introduction to construction.</td>
<td>Construction examples.</td>
</tr>
<tr>
<td></td>
<td>Basic axioms (postulates) of Geometry from Geometry Book pages 12-23.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Geometry – Euclid’s first 28 propositions put into current language.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Return and review Week 1 Test</td>
<td>Warm-up puzzle.</td>
</tr>
<tr>
<td></td>
<td>Algebra lesson: radicals</td>
<td>Worksheet: radicals.</td>
</tr>
<tr>
<td></td>
<td>Introduction to construction. (learning the fundamentals)</td>
<td>Worksheet : Zeno paradoxes</td>
</tr>
<tr>
<td></td>
<td>Zeno and his paradoxes (Greek Philosopher and Mathematician)</td>
<td>Construction of bisecting a line segment, angles and sides of a triangle.</td>
</tr>
<tr>
<td></td>
<td>Archimedes and the Eureka Boat Project.</td>
<td>Worksheet: Word Problems</td>
</tr>
<tr>
<td></td>
<td>Heron of Alexandria and area of triangles using his formula and square root approximation method.</td>
<td>Puzzle Challenge.</td>
</tr>
<tr>
<td></td>
<td>Research Project: Introduce requirements for individual research projects due the morning of the last day of class.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algebra: Fun with Word Problems!</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>More on geometry: Conic Sections and equations for conics.</td>
<td>Warm-up puzzle</td>
</tr>
<tr>
<td></td>
<td>Techniques for solving Sudoku puzzles</td>
<td>Worksheet: Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worksheet: Heron’s Formula for the area of triangles and method for finding square roots.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worksheet: word problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Challenging puzzle.</td>
</tr>
<tr>
<td>10</td>
<td>Week 2 Test on information covered this week.</td>
<td>Warm-up puzzle</td>
</tr>
<tr>
<td></td>
<td>Crazy Numbers Day (Golden ration, perfect numbers, etc.)</td>
<td>More on the Golden Ratio</td>
</tr>
<tr>
<td></td>
<td>History of pi through the ages including important figures from all cultures</td>
<td>Game: Pi trivia</td>
</tr>
<tr>
<td></td>
<td>Video: Story of pi</td>
<td>Afternoon Guest: Becca Roberson</td>
</tr>
<tr>
<td></td>
<td>Pneumatic game for digits of pi.</td>
<td></td>
</tr>
</tbody>
</table>

Syllabus: Great Discoveries in Mathematics
Week 3

<table>
<thead>
<tr>
<th>Day</th>
<th>Topics</th>
<th>Structure and Methods</th>
</tr>
</thead>
</table>
| 11 | • Great Women in Mathematics
 • Hypatia, Maria Agnesi
 • Sophie Germain
 • Sonya Kovalevsky
 • Emmy Noether (contributions to abstract algebra)
 • Math related to Sophie Germain, Sonya Kovalevsky, and Emmy Noether.
| | • Morning Warm-up puzzles (1 hour)
 • Compile survey results for birthday data.
 • A Birthday Surprise! Historical Connections in Mathematics, Volume I, page 55
 • Group Project: Skits. Students will be asked to work either independently or in groups to prepare a skit on one famous mathematician covered to this point.
 • Worksheets: Women in mathematics
 • Afternoon puzzles.
 • Research Paper 3:00 – 4:20 pm. |
| 12 | • Complete Women in Mathematics.
 • Introduction to arithmetic and geometric sequences
 • Fibonacci and his sequence
 • Mayans and their number
 • Algebra: binomial expansion
 • Pascal and his triangle
 • Reading Assignment: Blaise Pascal, Historical Connections in Mathematics, Volume I, pages 47 – 49.
| | • Morning warm-up puzzles (1 hour)
 • Worksheet: recognizing number patterns (including Fibonacci sequence)
 • Worksheet: Arithmetic and Geometric Sequences
 • Worksheet: binomial expansion, difference of squares
 • **Research Paper** 9:00 – 10:20 am
 • Worksheet: Mayan Numbers
 • Project: Pascal’s Perimeter, page 54, Historical Connections in Mathematics, Volume I.
 • Afternoon hard puzzle (30 -45 minutes)
 • Selection of mathematicians for research papers. |
| 13 | • Introduction to binomial expansion,
 • \((a+b)^2 = a^2 + 2ab + b^2\).
 • More on Pascal, binomial expansion.
 • Conic Sections (parabola, circle, ellipse, hyperbola)
 • Techniques for solving Sudoku, Magic Squares, and other puzzles.
| | • Morning warm-up puzzles (1 hour)
 • Academic Curiosity: Using Pascal’s Triangle to solve, \((a+b)^n\), when \(n \geq 2\).
 • Worksheet: conic section equations, puzzle cut-out to make conic sections
 • Afternoon hard puzzle (30-45 minutes)
 • Research Paper Today! (3:00 – 4:20 pm) |
| 14 | • Finish up Research Papers (9:00 – 10:00 am)
 • Puzzles
 • Post-Assessment Skills Test
 • Great Mathematicians Presentations: half of the class (afternoon)
| | • Morning warm-up puzzles (1 hour)
 • Post-skills test (1:00 – 2:00 pm)
 • Worksheet: Review of the week’s topics.
 • Evaluations of instructor and TA. |
| 15 | • Great Mathematicians Presentations: half of the class
 • Introducing the difference between sequence and series.
 • Gauss and summing up arithmetic series
| | • Presentation of Research Papers
 • Puzzles |

Syllabus: Great Discoveries in Mathematics