ADVANCED CRYPTOLOGY (COD2)
CTY COURSE SYLLABUS

Week 1

Info sheet, pre-test, Sunday survey, honor codes, computer lab forms, check roster

Day 1

morning

• “Previously … in Cryptology”: skit
• Introductions
• Icebreaker involving modular arithmetic
• Classroom rules
• The map of CODE on the board

afternoon

• CODE map continued
• Re: cipher wheels & how to do Caesar and Vigenère on TI with his program WHEEL
• auto-key encryption

evening

• worksheet #1 on icebreaker and use of WHEEL, auto-key
• Reviewing with course pack

Day 2

morning

• Review of the Euclidean Algorithm
• Review of the EEA
• Multiplicative inverses in mods

afternoon

• Review of public-key cryptography and authentication
• Knapsack ciphers
• Motivation of and introduction to matrices

evening
• Worksheet. Heavy on a knapsack exchange and a problem illustrating why 2 x 2 matrices multiply the way they do.

Day 3

morning
• More on matrices, up to and including inverses and how to do everything on the calculator.
• Error-correcting codes. Motivation of the generator matrix.

afternoon
• More ECC, writing down the steps and getting the students to do it
• Permutations: cycle notation, composition, identity, inverses
• Intro to McEliece encryption, up to definition and calculation of public key F

evening
• Day three worksheet.

Day 4

morning
• McEliece public key encryption

afternoon
• More McEliece stuff.
• Fermat skit
• Factoring vs. primality testing as mathematics problems
• Fermat Factorization

evening
• Day 4 Worksheet

Day 5
morning

- COD2 Map – summary of what we’ve learned so far in COD2, and calculator program sharing
- Computer lab: Looking at multiplication tables and exponent tables and making conjectures and seeing the connection to cryptology

afternoon

- More time finishing up the lab
- Discussion of what was learned in the lab
- The square-multiply method
- Sideshow: Intro to probability and statistics applied to crypto, up through basic addition and multiplication rules.

evening

- (Sunday) Worksheet on mods stuff (bring up primitive roots)

Week 2

Day 6

morning

- More probability, derangements
- Cracking codes using statistics – the index of coincidence

afternoon

- Pollard rho factorization
- Review of Diffie-Hellman and RSA

evening

- Work on Simon Singh challenge, worksheet

Day 7

morning

- ElGamal encryption
• The Pollard-(p-1) method of factorization

afternoon

• Digital signatures and ElGamal applied thereto

evening

• Constructing new Enigma machines, worksheet

Day 8

morning

• Primality testing
 • Permutations and their application to the Enigma

afternoon

• Carmichael numbers, the Miller-Rabin Primality Test
 • Euler’s Phi function
 • Intro to Enigma rotor recovery problem

evening

• Study for midterm

Day 9

morning

• The midterm exam

afternoon

• Review of the midterm
 • Completion of second Enigma unit.

evening

• Completion of second Enigma unit, exercises.

Day 10

morning
• M-209: The introduction – history, how it works, encrypting/decrypting on paper.

afternoon

• elective topics: pseudo-random numbers and authentication challenges? P vs. NP complexity issues in mathematics/crypto?
• M-209 training video from the 1950’s

evening

• Special lecture in Adams Auditorium with Number Theory and Math Reasoning classes

Week 3

Day 11

morning

• Extensive history of science and our understanding of the world
• Our current understanding of the universe and quantum mechanics
• Quantum computing

afternoon

• Quantum computing demo
• M-209 – more about the mathematics underlying the machine

evening

• Exercises

Day 12

morning

• The M-209: encrypting “manually,” and the protocol for its use.
• The M-209 crack part I: cribbing

afternoon

• Quadratic sieve
• The M-209 crack part II: just beginning

evening

• Exercises related to the day

Day 13

morning

• M-209 Crack Part II and III: finding relative settings of pins on rotors and the cage, discussion of finishing off the crack
• Continued fractions

afternoon

• Mathematics needed to understand elliptic curves

evening

• study for final, work on Simon Singh challenge

Day 14

morning

• Elliptic curve cryptology

afternoon

• Final Exam Part I: cracking the Kryha machine

evening

• Final Exam Part II: cracking the Kryha machine

Day 15

morning

• Post-assessment test given