1. **Sequences, Series, and Mathematical Induction**
 - define a sequence
 - identify arithmetic and geometric sequences
 - find a formula for the nth term of a sequence
 - use sequences defined recursively to solve problems
 - define a series
 - find the sum of the first n terms of arithmetic or geometric series
 - find or estimate the limit of an infinite sequence or determine that it does not exist
 - find the sum of an infinite geometric series
 - represent series using sigma notation
 - use mathematical induction to prove that a statement is true

2. **Matrices**
 - find the sum, difference, or scalar multiples of matrices
 - find the product of two matrices
 - find the inverse of a 2×2 matrix
 - use matrices to solve linear systems
 - solve communication network problems using matrices
 - make predictions using powers of matrices
 - find the images of points under different types of transformations using matrices

3. **Combinatorics**
 - use Venn diagrams to illustrate intersections and unions of sets
 - use the inclusion-exclusion principle to solve counting problems involving intersections and unions of sets
 - use the multiplication, addition, and complement principles to solve counting problems
 - solve problems involving permutations and combinations

4. **Probability**
 - define sample space
 - define probability
 - find the probability of two events occurring together
 - calculate conditional probabilities
 - determine if events are independent
 - use the binomial probability theorem
 - use combinations to solve probability problems
 - solve problems involving conditional probability
 - find the expected value of a game
 - determine whether a game is fair

5. **Statistics**
 - display data in a stem-and-leaf plot, a histogram, a frequency polygon, or a cumulative frequency polygon
 - find the mean, median, and mode of a set of data
 - draw a box-and-whisker plot for a set of data
 - use box-and-whisker and stem-and-leaf plots to compare sets of data
 - find the variance and standard deviation of a set of data
 - convert data to standard values
 - recognize uniform, skewed, and normal distributions
 - determine for a normal distribution the percent of data within a given interval
 - find percentiles for a set of data
 - recognize different types of sampling procedures and identify their limitations
 - estimate population characteristics based on samples
 - use a sample proportion to find a confidence interval for the corresponding population proportion
6. **Curve Fitting and Models**
 - find the line of best-fit for a set of data
 - find the correlation coefficient for a set of data
 - find the best-fitting exponential curve
 - fit a power curve to a set of data
 - choose the best model for a data set

7. **Limits, Series, and Iterated Functions**
 - find the limit of a function
 - find the limit of the quotient of two functions
 - determine whether a function is continuous
 - sketch the graph of a rational function
 - use the power series of a given function to find an infinite series for a functional value or for a related function (optional)
 - analyze orbits for iterations of a given function (optional)

COMMENTS OR ADDITIONAL TOPICS COVERED:

__
__
__
__
__
__
__
__